Maximizing the Weighted Number of Spanning Trees: Near-$t$-Optimal Graphs

نویسندگان

  • Kasra Khosoussi
  • Gaurav S. Sukhatme
  • Shoudong Huang
  • Gamini Dissanayake
چکیده

Designing well-connected graphs is a fundamental problem that frequently arises in various contexts across science and engineering. The weighted number of spanning trees, as a connectivity measure, emerges in numerous problems and plays a key role in, e.g., network reliability under random edge failure, estimation over networks and D-optimal experimental designs. This paper tackles the open problem of designing graphs with the maximum weighted number of spanning trees under various constraints. We reveal several new structures, such as the log-submodularity of the weighted number of spanning trees in connected graphs. We then exploit these structures and design a pair of efficient approximation algorithms with performance guarantees and near-optimality certificates. Our results can be readily applied to a wide verity of applications involving graph synthesis and graph sparsification scenarios. Working paper. [email protected] – https://kasra.github.io Centre for Autonomous Systems (CAS), University of Technology Sydney. Department of Computer Science, University of Southern California.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting the number of spanning trees of graphs

A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.

متن کامل

NUMBER OF SPANNING TREES FOR DIFFERENT PRODUCT GRAPHS

In this paper simple formulae are derived for calculating the number of spanning trees of different product graphs. The products considered in here consists of Cartesian, strong Cartesian, direct, Lexicographic and double graph. For this purpose, the Laplacian matrices of these product graphs are used. Form some of these products simple formulae are derived and whenever direct formulation was n...

متن کامل

Designing Sparse Reliable Pose-Graph SLAM: A Graph-Theoretic Approach

In this paper, we aim to design sparse D-optimal (determinantoptimal) pose-graph SLAM problems through the synthesis of sparse graphs with the maximum weighted number of spanning trees. Characterizing graphs with the maximum number of spanning trees is an open problem in general. To tackle this problem, several new theoretical results are established in this paper, including the monotone log-su...

متن کامل

Toward Optimal Community Detection: From Trees to General Weighted Networks

Many networks including the Internet, social networks, and biological relations are found to be naturally divided into communities of densely connected nodes, known as community structure. Since Newman’s suggestion of using modularity as a measure to qualify the goodness of community structures, many efficient methods to maximize modularity have been proposed but without optimality guarantees. ...

متن کامل

On relation between the Kirchhoff index and number of spanning trees of graph

Let $G=(V,E)$, $V={1,2,ldots,n}$, $E={e_1,e_2,ldots,e_m}$,be a simple connected graph, with sequence of vertex degrees$Delta =d_1geq d_2geqcdotsgeq d_n=delta >0$ and Laplacian eigenvalues$mu_1geq mu_2geqcdotsgeqmu_{n-1}>mu_n=0$. Denote by $Kf(G)=nsum_{i=1}^{n-1}frac{1}{mu_i}$ and $t=t(G)=frac 1n prod_{i=1}^{n-1} mu_i$ the Kirchhoff index and number of spanning tree...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1604.01116  شماره 

صفحات  -

تاریخ انتشار 2016